Maryland Epidemiology and Genotyping Update

Wendy Cronin, PhD, Epidemiologist Center for TB Control & Prevention Maryland Department of Health & Mental Hygiene

TB Annual Meeting March 26, 2015

Presentation Outline

- Maryland TB Epidemiology (2014)
 - Maryland TB numbers and trends
 - Country of origin
 - Demographics
 - Drug resistance
 - Risk factors
- TB Genotyping
 - Refresher on what genotyping is
 - Alerts
 - Uses

Maryland TB, 2010-2014

3/24/2015

TB Rates, Maryland Counties, Baltimore City, US (2005-2014)

Maryland, Maryland Trend, and US TB Rates, 2005-2014

TB Case Rates per 100,000, United States, 2014*

Case no. 9,412

≤ 3.0 (2014 *provisional national average)

>3.0

CDC, 3/20/2015

State TB Case Rates per 100,000 Population, by Jurisdiction, 2014

TB rates among US and foreign born, Maryland vs. US, 2014

3/24/2015

6 Top Countries of Origin-MD, 2014

WHO Estimates of TB Incidence 2013

Country	Incidence/100,000		
Philippines	292 (261-331)		
Ethiopia	224 (188–276)		
El Salvador	39 (35-42)		
India	171 (162–184)		
Nigeria	338 (194–506)		
Cameroon	235 (210–265)		

Foreign-born TB Case Numbers, by Time from U.S. Arrival to Diagnosis, 2012-2014

3/24/2015

TB Cases by Race and Origin, 2014

Foreign Born

Cases by Age Group Maryland, 2010-2014

3/24/2015

The Canary in the Coal Mine

Children under 5 years old

- At high risk for TB meningitis, disseminated TB
- Disease can progress quickly
- Important to find source case
 - Stop further transmission
- Can represent undiagnosed adult cases

Case Rates per 100,000 in Children < 5 Years of Age; Maryland vs. US, 2010-2014

Maryland Drug Resistance, 2014

Maryland Drug Resistance, 2014

Starting Treatment with 4 Drugs

INH resistance

Maryland (2014) US (2013)

TOTAL: 7.7% 8.8%

US born: 4.0% 5.6%

Foreign born: 10.9% 10.5%

- 97% of eligible Maryland patients started treatment with 4 drugs, vs. 87% in 2013 !!!!
- National goal is 93.4%

With Fewer Cases Why Are We Still Working So Hard?

- Risk factors
 - Living and Occupation
 - Substance Use
 - TB HIV co-infection
 - Diabetes
- They are more complex!

TB Risk Factors: Living and Occupational

	2012	2013	2014	National		
Congregate Setting						
Homeless	5%	3%	4%	5.5%		
Corrections	0.5%	0%	1%	4.2%		
Long Term Care	1%	1%	2.5%	2.2%		
Substance abuse	9%	6%	6%	11-12%		
Occupation						
Health Care	9%	3%	6%	4%*		
Correctional	0.5%	0%	0%	0.1%*		

TB HIV Co-Infection Trends, 2010-2014

TB HIV Co-Infection, Origin of Birth

TB and Diabetes

Status of DOT in Maryland

Maryland Goal: 100%

Year	Self- Administered	Directly Observed	Both SAT & DOT	TOTAL	% DOT
2010	8	156	18	182	86%
2011	5	158	32	195	81%
2012	4	166	29	199	83%
2013	2	135	31	168	80%

Questions?

TB Genotyping

Role of TB Genotyping

- Use genetic patterns of specific parts of the M. tuberculosis organism to:
 - Identify and intervene in ongoing transmission (outbreaks)
 - Determine relapse versus reinfection
 - –Identify or "confirm" false positive cultures

Mycobacterium tuberculosis "1solate"

• <u>Definition</u>: a pure culture of *Mycobacterium tuberculosis* organism from a single patient

Genotyping terminology

Spoligotype	MIRU	MIRU2
777776777760601	224325153323	444234423337

PCRType PCR00233

GENType G00011

Genotype Cluster

When a TB case's isolate genotype matches at least one other TB case's isolate genotype

PCRType	GENType	Cluster Name
PCR00002	G01143	MD0002_001
PCRType	GENType	Cluster Name

Epi-Links

- Epi-links are essential for determining ongoing transmission
 - Person: named contacts; similar demographic and risk characteristics

Place: location where the TB patients spent time together

Time: exposure during infectious period

Epi Links ——>Genotype Cluster?

- Local Health Dept calls CTBCP
- Provider or ICP calls CTBCP
- CTBCP gets routine genotyping report from CDC (TB-GIMS) and calls LHD
- CDC (TB-GIMS) sends an "Alert"
- Laboratory calls CTBCP

Genotyping Can Enhance Contact Investigations

Genotype Cluster Alerts

- Statistical method performed by CDC (Log likelihood ratio)
- Low, Medium, High (recent transmission risk)
- Based on
 - Two or more cases
 - Geographic location (same county vs. US)
 - Time: 3 years or less
 - Change in number of patients in the cluster

TB-GIMS

1 – County A

2 – County B

2- County B Alert

TB Annual Update, March 2015

3- County D

3- County D

3- Wicomico County

Worried well?

Relapse or exogenous re-infection?

Case	PCRtype	GENtype	Cluster_ name	Genotype Report Date
Homeless outbreak strain	PCR01047	G10248	MD_0002_001	January 2012 – June 2014
Rodney Holmes	PCR17481	G05540		February 2008
Rodney Holmes				(2014)

Relapse or exogenous re-infection?

Case	PCRtype	GENtype	Cluster_ name	Genotype Report Date
Homeless outbreak strain	PCR01047	G10248	MD_0002_001	January 2012 – June 2014
Rodney Holmes	PCR17481	G05540	MD_0104	February 2008
Rodney Holmes	PCR17481	G05540	MD_0104	Sept 2014

False Positive Cultures

False Positive Cultures

False Positive Cultures

<u>Causes</u>

- Laboratory crosscontamination
- Clinical device contamination: bronchoscope
- Clerical errors: mislabeling of patient specimens

Consequences

- Incorrect TB diagnosis!
- Unnecessary anti-TB treatment
- Delays in correct diagnosis and treatment
- Overestimation of the TB case rate

Questions?